Shop Mobile More Submit  Join Login
Trees Revisited by DinkydauSet Trees Revisited by DinkydauSet
Mandel Machine, Mandelbrot set

I have often used the evolution zoom method to make julia morphings with 2 or more different types of shapes inside, though what I really wanted at first was 1 type of shape. I hid the fact that I didn't know how by choosing the same type 2 times. Now I found a way to get rid of the unnecessary copies, but the overall shape is very different this way.

It reminds me of the shape of a 3rd power Mandelbrot Set. The center is like the main double cardoid and it also has (approximately) infinitely many bulbs. I have been able to mimick the circle-like bulbs of the second power Mandelbrot set before, though without the cardoid. This which makes me wonder: is it possible to make the shape of a 4th power Mandelbrot set? It's definitely not possible to make the shape of the whole set because it doesn't have 2-fold rotational symmetry. The fifth power Mandelbrot set might be possible...

Magnification:
2^9706.3
7.7169718014717701081201473595858 E2921

Re = -1.7688011252221877204709741758179943289719776561698906746323500348383699513591489612873967509274966440413557617241491600329058372805735550148585182138711720726695297443148253463184817954013513962337939472169657134580286294121622150299478675204801828772493631773673987904309055816283198587234189197841056049571802980640265156000065177874740485973621705174732650630769247931314556164494074766611938824067322405243506104378777342718615187425356491320861592233700947335816911589141624787016843941868708374406140859169960100095681558780027696824171951543816248932169324543091691569091287791899396819510536609202651352744135987374400083879072341472022542290361286853009509839846452730453481513265387679576679704654354482489532053723293459079676004717895713664899711957495757332765588472539464918031164836902929586122654796297094770427794366571322707809112332370950804360132673436651821911772042879533877478458718004410635110925632999566574084574235463912943470981721752643771773959558831554589854485604975364621185552698316665558691598027940316801636979000040560621127029663794019613541851673307251878131613238361091458431747078574040791783358730895007793682917277921800488141026306756804472855015620008630819680964376619758271645715301315352030916979509384752961939243018082424561263094775528318739161642895706042971428881780441631696627603372495412977727051511388497154183802329850302603882147199574795085484970649887998929691672019785648299562237807546571551108703613853476476635584556652568811579895157292213613741850776600290618732784205366679406209183839569625343815117957194201655856830438148745539385078552910235978236390095560441089361220724853517548990588385468840182561589121573689707841713231982289676578964566304537759382926839898672600236484643838432273575504175283877683434831283034936477963766914535828475223078368899757971868123519742649163544483797060207905762748263974741206676035342373418596222922297434957597148263365121018319605659231307996294004235202904458380630516068251886040368370758115208145816426943812593846118972673514534516052904742220875050306351568860227521804267873501871666887627451041383334734935761084602750325040614769804761840568041357299680337154522923062905316277109469749988131259315903712995926636115412457507400577726150468154511468443846674422928256891145186072654597069023685731909339210627069566886224118764897114006992931666743587971029936529081795869187074154311186008321350528072353048323119928080244615001852683452018915138610896758225470364123751023258566092514006871941278112232662554373559171314229397877800428215421102331977257179431815411793258149216937585480088953227258261067271164276065880412885595898519409991063276663586816144203494914936288482747501535541621005846894158892662624469998310599333626021627844856527863309756858610732042800629249468455546995415833057344470988207268766674228544321987366798992201893460402434350436358123395575256774446824903498517085456941735650

Im = 0.0023878480881805962820493232458554875037388092952829542156222752945764166987851812825932831879136756035194454484562929129723749322427988417441140327575831621191333413445566201483453075727278255196911626265388377437378928553941592342752390149210875595092895828341550441216137232078130843706694514812411896466242747598047237841899227407137207996153631661165310676900278121081109773454730706218028487944757761815189100251241603686120944865189418544771857366780301296072952615170045095076990744788601062500725092197419557540878567542349119974872148895674529910361655153195175960926770555469301301644923525565259716471074402246266656292684512998421471369841245969419718109233723597846540485542777563021083995697611612300274768455277194690961563407811185353390550470749277084198271845472675080540680170598292583097345103989777045408378143967319947909282864165283151152839968641455189430997723981196299993593987572466737384717840587289933588707393432757726734145910903896328723978531513514818704044611071990775303126673802839955813108666929364596523501121842680741526691737338933843486436192243112643661559745631040930829858257086064458039521611542008653748816940818206207801995237906691860097067120322932112566157731633594592235122962402399303991990210641677394799740426353614590140043776160707267731601373537975599905293399363474940388882572852053965492001959280706180255738237245127327321458755584892753479301937772087551712369041261813263065763604200797565327779240767708248581170092652292506127018525202830263388240593001343477542962460321943107998174534879536290722653460016994101289360707367764170864339880483298771875602916087103654747021702626710543570965779670061788813662643393054075906197477431314232350408058042444336898537707639499259746724526716689862903092860371521093305826388382514627257961717670586447669706353227908699821704206249993663026132845466290889074256678794497679729004222488549040762005041804135438300445236268180071097035346868429301772840208183351656109468691582900448799641336130006700050798475724210207542415707634564703190071036272867374271564705033881962125025327642255479054567095087898614790426657803039774715608219744663580852307172337863461461834873527416092515835896614707350930635299568427145577276278022801039971177502546312139872058890952120043526040902563046387962512879897692678849575962053093732046987800363511115465138658476718912646306300966817227976958372341341033832688719927824607797592973257546782077781443370408783271172848875987410446352252668907268099455600238014668283296120502908065655257368576768542147837197473079816454901442718050330214070753960956199047391284973073528869336377525870293835186654326572883021390296220440232615891627131048813022135789763124753663887361437564467802011993179524788277980585521125569771547775923387161097600941727093963430649526526356251808119775432738991172835499142733538819006271799133002338357073537763377568409858091085076509585387354490650
Add a Comment:
 
:iconquaz0r:
quaz0r Featured By Owner Jan 13, 2017  Hobbyist Digital Artist
whoa cool stuff dinky!
Reply
:icondinkydauset:
DinkydauSet Featured By Owner Jan 13, 2017  Hobbyist Digital Artist
Thank you
Reply
:iconfractalmonster:
FractalMonster Featured By Owner Jan 13, 2017
:omg:
This is VERY interesting :wow: There seems to be an infinity more  to discover in the field of raw fractals. You ought to expose this to mathematical institutions on universities. Whish you a really good luck with you further explorations :thumbsup::
Reply
:icondinkydauset:
DinkydauSet Featured By Owner Jan 13, 2017  Hobbyist Digital Artist
Thanks
I'm sure there's a lot to find, especially at even greater depths.
Reply
:iconfractalmonster:
FractalMonster Featured By Owner Jan 13, 2017
No problem :aww: For sure there are, an this was a real surprise :wow: Maybe there are strange being also (at yet greater depths :D
Reply
:iconwaste-and-tragedy:
waste-and-tragedy Featured By Owner Jan 12, 2017
Intense. :love:
Reply
:icondinkydauset:
DinkydauSet Featured By Owner Jan 12, 2017  Hobbyist Digital Artist
Thanks
Reply
Add a Comment:
 
×
  • Art Print
  • Canvas
  • Photo
Download PNG 8192 × 4096



Details

Submitted on
January 12
Image Size
56.0 MB
Resolution
8192×4096
Link
Thumb
Embed

Stats

Views
153
Favourites
8 (who?)
Comments
7
Downloads
4

License

Creative Commons License
Some rights reserved. This work is licensed under a
Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
×