Shop Mobile More Submit  Join Login
Sequence evolution by DinkydauSet Sequence evolution by DinkydauSet
Computation: Kalles Fraktaler (Claude's GMP fork)
KFB map converted to MMIT using a KFB to MMIT converter that I made
Coloring: Mandel Machine

This was rendered in 4 tiles of 16000×16000 for a total resolution of 32000×32000. I used custom software to convert the KFB maps (iteration data) from Kalles Fraktaler to MMIT (Mandel Machine's iteration data format). Then I used Mandel Machine to make images of the iteration data. I used Photoshop to assemble the puzzle and apply anti-aliasing. Normally I would mention the main program used to render the image and omit programs that play a small role such as Photoshop for anti-aliasing, but in this case that's not possible. There's not a single program that is clearly the main program behind this image.

This image shows fractal patterns in sequences.

Oh, I almost forgot to say: The bailout value is 2 here. I missed that so much since perturbation was invented. It's the more natural way to achieve coloring in my opinion and I think it's great that Kalles Fraktaler has this ability. Everyone has been using higher bailout values because it helps with perturbation. Before perturbation, eveyrone used 2 because it was the lowest possible bailout and therefore the fastest, because fewer iterations had to be computed.

Magnification:
2^10034.880
6.30995095145 E3020

Coordinates:
Re = -1.76903662721565731264101749028160721190904888023519544905339483009967096815954512652634436154905415591870716847237764013229498980265679267261337975001530618312124578753263934001694377207606864054726220329965296608235526628786340370626765274146681221532084205791351666644520044085645155512564315353491623270200170512021690460781620534374681537676200890850023584032373690206493193949308922079101762557630378717785910568998757879881450589620795124876217302029809542808486175015332369660530964326605097675262605304601499158888494888525650692764205785901544467837783491053218727089288054178869753150950077001099753831649997149191649524864211413476995831753350162357932231007733115563745631411875623695749943519710199998507683085969902371531629120161571088037653898125315154340403422961965389681439145148512338274481798384611284391747887824748941127026237186341970625675693566994917166974583329483208207339772166071377052762418793513738778998744097503148025740856805563260088813197191330664901229880489767413068120967527338708027055681065208173403604018186750103953159354178215660292014712465304818969750902060940604599335630683036999625685759807374788759170487504518049658362030252747600030414495104862639384108620434756170103142687104056859931289625698897448565919164709411338356915335037014173094857998984231614218054992514094749817126718353266709031027855597431047585888356287537980775906601190281176520843528530371122803901835817230437818598856774655814527010524730806213344486706736978506663867905670692547377066426973939081227023125194678102291793913432344599780164968464067896551670792827562382223262670651337922529327820981553916018656619476028562934590703172497345072709370790097614946816161167330363164601395719240071333361735785342547244917686034173389488385443225043525134967010296372001373725563011417627541185139744177173442269532631731813000816201372017961482525193177468768926188903777530171187729144053915866134445951302115777442964129698046266738721161443654604293311737190492251094379113487454688298981289919977731795419700045717526249016543233381471813616990484340610822413509559219467177016553710490127822219337306175506755151287050152333319378768538394768991531748060747649365846250879906159243907716686222986567685509856375219575841753820173024482734961466301652007741380152838463041418555947934104870883099933060435496992668907853058009591628089113094725603315983372382302142884798365396349327394988308347045110648245725287660620602677134662985702018512827295396179849923108422657946742012837566769277577032555491932518454649593819882382065267718483272049083880723517899679081619394549078239880858962721103631975296057628469741222990875851334053249653786470030521615911244978721994419905907372778387799584938262956493770299932933351258157617593659525416356716298117515320541988120760632800525269743243492671595187127448252863247832944097616543148622913500479025829506138971961305859287674906202848536984072112555368221123940999717199954829404052269131115250293576673948513334946579837687078520652507457276118179424838906005
Im = 0.00315510948974492697145473551355899286034321461233687852579200020768847305652212619513913418474795832344439949603068976241632626490296340544369856275169449382958867174477932441624782958704142742430449129316470673628498794184139952850879059533766592649597258366586269319597636749314028031210003647496803674503156269315287035035644109195671097025475282026065557266046865469074860461286230345311216356484777198319498434549749588475970244862829219105211717817003231755641179450633803201932248333053300263373704401566152020561635979277550725198158881685047701096265292092336423987619211834084505768701791793501715766555699809226828761357019535153366389623555878331259916563831917741000173776205627727891086182481882203247049367185436658003287155300045490394511832313068734979624567391164213655445673846139796915317010588665204615033653397772297843747017362287304486238704484550333450645980675647084723218680400038708259821002746875379967623768641382687888891957902585250332500270641073333102207539465376210181307720901791213924345119756758825834275372055980449266952616005825975555387716500817522824908432857026071665033012816778484145660697772438775947570824580751968890119224644480337206121139139960931936896495438490580120274219819634431878033441813045080124666648810444346334862324555615411291796867928283563787289130281557984780596508469449217893744004289280636206790654929475531109599188368464025877944166915314498404614649547497167549830589460416051460262090395134379178359996707303755192696440870466328095705320862210945665914733933403658892944393734878299458644702793404742656342135080525270197657975219761728197515530387960290508504522479278182948808410972213465135292594759976491136515662892639741176244499290347385487457494767993007406838789706336487154564074998865426473146293136275622451158641999031274598958248604351893254601585144826113667880558133984958635036080727223460168633341619010066802131392649256611975591608778355109397857200372013515532231462261731965273232780902680930635020848228821870261204002216214692997292332421049744320066469280275429216312520065573882596487927600013687698376136444495904212378522124062121848985118942554798207277600240214935257860347666512033640315354610010069311304779896037690388902546888562554658907264356107430142932702726193411178752431628619990029419988876079621804714765171360116374062530923602160805360048630192102748393753641119654726218199471357174254186859295130087652599379206307932853809898209795165190403954583336735058335198659519617220614747675824466754939891811874278047661699480465311036104208280825831509056774794461773972370245362981623456721757668573918886964641001946918218824298486598029959041150786584581657401307369508978116481313202140184932103816243889168153730855721150992183953062765777244598341017865259538963979670716112113081415386242559960175482826477535914181536659142152808343809501621553304623816058475693112225659506509883318046392746694624556788472339674515855988424407351416489877172373434476092412174578821415190214228194909622728302349995698936326721995
No comments have been added yet.

Add a Comment:
 
×



Details

Submitted on
March 16
Image Size
53.5 MB
Resolution
5333×5333
Link
Thumb
Embed

Stats

Views
62
Favourites
5 (who?)
Comments
0
Downloads
2

License

Creative Commons License
Some rights reserved. This work is licensed under a
Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
×